
Written Exam at the Department of Economics
Winter 2017–18

Advanced Microeconometrics

Final Exam

December 19th (9:00–12:00)

(3-hour closed book exam)

This exam question consists of 5 pages in total (including this cover
page).

NB: If you fall ill during an examination at Peter Bangsvej, you must contact
an invigilator in order to be registered as having fallen ill. In this connection,
you must complete a form. Then you submit a blank exam paper and leave the
examination. When you arrive home, you must contact your GP and submit
a medical report to the Faculty of Social Sciences no later than seven (7) days
from the date of the exam.

Please note that you should answer all questions.

Indicative weighting:
Problem 1: 50%, Problem 2: 30%, Problem 3: 20%.

The percentage weights should only be regarded as indicative. The final grade
will ultimately be based on an overall assessment of the quality of the answers
to the exam questions in their totality.
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Problem 1

To investigate the determinants of female labor force participation, you are

provided with an independent sample of N = 2, 477 married women from the

US National Longitudinal Survey of Youth (NLSY).

The dependent variable y ≡ WEEKS measures the number of weeks worked by

these women in 1990. Approximately 45% of the sample reports working full-

time (y = 52) and 17% reports being out of the labor force (y = 0). Part-time

workers report a number of hours that can be considered to be continuous.

The following explanatory variables are available:

� AFQT: A measure of cognitive ability (Armed Forces Qualifying Test,

standardized test score with zero mean and unit variance).

� EDUC: Number of years of schooling completed.

� HUSBINC: Husband’s income in the previous year (in thousand USD).

� KIDS: Binary indicator for having children (= 1 if at least one child, 0

otherwise).

These covariates are stored in a N × 5 matrix X, where the first column is a

vector of 1s for the intercept term of the model. The column vector xi is used

to denote the ith row of X.
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Figure 1.1: Histogram of the dependent variable WEEKS.
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Question 1.1: Describe the features of the dependent variable WEEKS, and

explain how the Tobit model can be extended to accommodate them.

You should state your model analytically as precisely as possible.

[Note: If you do not manage to answer this question, use the Tobit model

instead for this question and the remaining ones.]

Question 1.2: Derive the likelihood function LN(θ; y,X) of the model spec-

ified in Question 1.1, where θ is the vector of model parameters.

Question 1.3: Discuss the identification of the model, and especially, whether

any parameter restrictions are required for identification.

Question 1.4: Derive analytically the marginal effect of a given (continuous)

explanatory variable xj on the probability of working (either part-time

or full-time). You are not asked to compute this marginal effect.

Question 1.5: Discuss the maximum likelihood estimation results presented

in Table 1.1, which shows the parameter estimates (Est.) and their stan-

dard errors (SE).

Table 1.1: Maximum likelihood estimation results.

Est. SE

CONST 49.97 7.85
AFQT 0.14 0.05
HUSBINC -0.24 0.05
KIDS -31.19 2.67
EDUC 1.56 0.62
σ 44.51 1.23
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Problem 2

Consider an iid sample y = (y1, . . . , yN)′ drawn from an exponential distribu-

tion with scale parameter θ > 0 such that, for each i = 1, . . . , N :

yi
iid∼ Expon(θ), f(yi | θ) =

1

θ
exp

{
−yi
θ

}
, E[yi] = θ.

Question 2.1: Propose a natural conjugate prior distribution for θ. Derive

the corresponding posterior distribution.

You may use one of the distributions of Table 2.1. Justify your choice.

Question 2.2: Show that Jeffreys’ prior for this model is p(θ) ∝ θ−1. Derive

the corresponding posterior distribution of θ.

Hint: Remember that Jeffreys’ prior is proportional to the square root of

the determinant of the information matrix, i.e., p(θ) ∝ |I(θ)|1/2, which

simplifies to p(θ) ∝ I(θ)1/2 in the present scalar case.

Table 2.1: Some probability distributions.

Distribution Density f(θ | a, b) Mean

Uniform
1

b− a
a+ b

2

Beta
θa−1(1− θ)b−1

B(a, b)

a

a+ b

Gamma
1

Γ(a)ba
θa−1 exp

{
−θ
b

}
ab

Inverse-Gamma
ba

Γ(a)
θ−a−1 exp

{
− b
θ

}
b

a− 1
(for a > 1)
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Problem 3

Consider the following MATLAB code:

1 % Inputs:

2 % y vector Nx1

3 % x vector Nx1

4 % x0 scalar 1x1

5 % h scalar 1x1

6 function [yhat] = regress(y,x,x0,h)

7 kern = @(z) normpdf(z);

8 w = kern((x-x0)./h);

9 w = w./sum(w);

10 yhat = sum(w.*y);

11 end

Question 3.1: Express in mathematical terms what this MATLAB function

computes. You should only provide one or two equations to answer

this question. Be explicit about the notation.

Question 3.2: Using only words (no equations required), explain briefly the

methodology implemented by this function. In particular, describe the

role of the two scalars “x0” and “h”, and explain the values they can

take.
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